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Long-Wave Optics
Derek H. Martin and John W. Bowen

Abstract— In this paper we set out the bases of the near-
complete analytical methodology that now exists for the design
of long-wave optical systems. We follow the Gaussian beam-
mode treatment of free-space propagation, extend it to cover the
transformations produced by conic-section reflectors or lenses,
and incorporate both the propagation steps and the Iens transfor-
mations into a matrix formulation readily applicable to networks
of such reflectors or lenses. We demonstrate in the process
the theorems of Fourier Optics and keep explicit the vectorial
properties of the beam-fields. We show how recent formulations
of partial coherence have made it possible to include partially-
coherent beams in the same methodology. For the design of
high-performance systems, the inclusion of higher-order mode-
dispersion must be fully understood, the vector properties must
be recoverable, and the paraxiality on which the methodology
rests must be critically assessed. This paper gives emphasis
to these aspects and presents a single systematic formulation
embracing all the elements.

I. INTRODUCTION

M AJOR APPLICATIONS of electromagnetic waves in
the 100– 1000 GHz range are developing, in earth-

remote-sensing, high-temperature plasma heating and diagnos-
tics, high-definition radar, and astronomy. These applications
require high performance levels not only in the receivers
and sources but also in the directional quality of the beams
that are transmitted or received. These are formed by optical
systems which, in addition to shaping the beams, may be re-
quired to provide various signal conditioning or analysis steps,

such as frequency and polarization multiplexing, radiometric
calibration or spectral analysis.

Long waves spell diffraction, of course. Evaluating classical
diffraction integrals for a beam passing through a succession
of conic-section reflectors or lenses would be a laborious way
to approach design and optimization. It as well that there is
now, in our view, a near-complete analytical methodology
for the design of long-wave optical systems. This paper will
set out the bases of it. It follows the Gaussian beam-mode
treatment of free-space propagation, extends it to cover the
transformations produced by conic-section reflectors or lenses,
and incorporates both the propagation steps and the lens trans-
formations into a transfer matrix formulation readily applicable
to networks of such reflectors or lenses. It demonstrates in the
process the theorems of Fourier Optics and it keeps explicit
the vectorial properties of the beam-fields. Moreover, it is not
restricted to coherent beams; recent formulations of partial
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coherence have made it possible to include partially-coherent
beams in the same methodology.

The various elements in this Long-wave Optics have been

separately developed over the last twenty years or so. Some
special-case aspects have become familiar—in particular the
analysis of the propagation of a scalar pure-Gaussian beam
through a train of lenses. But for the design of high-

performance systems, the inclusion of higher-order mode-
dispersion must be fully understood, the vector properties must
be recoverable, and the paraxiality on which the methodology
rests must be critically assessed. This paper gives emphasis to
these aspects in presenting a single systematic formulation of
Long-wave Optics embracing all the elements.

II. BEAM-MODE OPTICS

2.1 Modal Propagation

The propagation in free-space of a coherent field, of angular

frequency w, is governed by the Helmholtz wave-equation

V2F + k2F = O (1)

where F is any one of the electromagnetic fields E, H, A

and the wave-number k ~ w/c. The fields all vary with times
as exp iwt but this factor will usually be omitted here.

It proves possible, and helpful, to treat the propagation

of a paraxial beam which satisfies this equation by treating
the beam as a superposition of “beam-modes” each of which
retains, as it propagates, a characteristic pattern of distribution
of field amplitude and phase in successive cross-sections, albeit
with a changing scale [1]– [3]. The relative amplitudes of the
beam-modes making up a beam can be determined if the field
of the beam is known over some cross-section through the
beam. We shall refer to this cross-section as the source-plane;
it will usually be the aperture plane of a feed-horn (not only for
a transmitting system but also for a receiving system because
the feed-horn in which the detector is mounted will usually
be the beam-defining component). We shall use phraseology

appropriate to transmitting systems but time-reversal allows a
direct translation for receiving systems.

We shall not deal with the explicit determination of the
beam-mode amplitudes for any particular horn here; our ob-
jective is to establish a systematic basis for the analysis of
the transformations suffered by individual beam-modes as
they propagate through a system of (ideal) lenses or conic-
section reflectors. For the design of high performance systems
it is necessary to retain detailed knowledge, not only of
the fundamental beam-mode, but also of higher-order beam-
modes. The relative phases of the modes then become a crucial
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matter and we shall place some emphasis on phase in the
development of beam-mode analysis in this and later Sections.

Our first purpose is to establish the beam-mode representa-
tion for a paraxial beam propagating into the half-space z >0
from a source plane z = O and to do this in a way that

allows the vector properties of the field to be recoverable.
The original demonstration of beam-mode analysis [1] was

fully vectorial but involved rather opaque formalism. Most

subsequent demonstrations [2] – [6] have been made in the

context of scalar field representations (but see [7]). To have
a formulation that allows recovery of the vector properties of
the fields we develop our treatment of beam-modes from a
representation of a beam in terms of its angular spectrum of
plane-waves. This also allows a clear view of the limitations
imposed by the paraxial assumption.

2.2 Angular Spectrum of Plane-Waves

Consider a propagating beam-field whose form in the zy-
plane at .z = O is known. This known form will serve as the

boundary condition necessary for finding an explicit solution
to the wave-equation representing the beam-field propagating
into the half-space, z >0, which is assumed to be source-free.

A plane-wave is a particular solution to the wave-equation;
a general solution can be written as a superposition of plane-
waves traveling in all possible directions into the half-space

z > 0, with two orthogonally polarized waves for each
such direction [8] – [10]. We can choose, for the orthogo-
nal polarizations for each direction, linear polarizations, one
having zero y-component of the electric field and the other
zero x-component. If wc denote these two polarizations P
and Q respectively we have the following two plane-wave
superpositions to represent the electric field in the propagating
beam-field (omitting the factor exp iwt)

(2)

Each is an integral over an angular spectrum of plane-
waves, the angular spectra being defined by the direction
dependent plane-wave amplitudes P(JcZ, Icy) and Q(L, &)-
The kx, ky, k= are components of the wave-vector, k, with

direction-independent magnitude k = (k:+ k; + k:) 1’2.
To determine the explicit forms of P(h, kg) and Q(L, kg)

by invoking the boundary condition, i.e. the known form of
the field in the source-plane z = O, we note from (2) that

//

+Cc

E.(zo, yo) = P(kz, k.)
—cc

. exp – Z(IG.XO + kyyo) ‘ d& d~y

H
+CO

~?J($o, Yo) = Q(kz, k,)
—cc

. exp – i(k.zo + kyyo) “ & dky (3)

where X., y. are position co-ordinates in the plane .z =
O. These are two-dimensional Fourier transform relations.
The scalar angular spectra P(kz, kg) and Q(kx, ICY)are thus
determined as the (inverse) Fourier transforms of the source-
plane fields, i.e.:

H
+Cc

P(kz, kv) = & _@ Ez ($0, Yo)

. exp i(kzzo + kvyo) . d~o dyo

. exp i(kZ~o + kvyo) . dzo dyo . (4)

(The presence of the factor l/4T2 indicates the Fourier trans-
form convention we are using).

Once EZ(x, y, z) and EY(z, y, .z) are established in this way,
reference to Maxwell’s equations would serve to determine
from them the remaining component of E, Ez (x, y, z), and

the components of H. Thus the two scalar angular spec-
tra P(kx, kg) and Q(kZ, kg) completely describe the field

throughout the half-space ,z > 0.
It should be remarked that linearly polarized E fields are not

the only possible choice as a plane-wave basis for description
of the beam. For example, the two scalar fields representing
left and right-hand circular polarizations could be used; and the
H-field, or the vector potential A-field, could be taken instead

of E, since H and A as well as E obey the vector Helmholtz
equation. One of the possible choices would eventually prove

to be computationally more economical in any particular
case than the others in that it required fewer beam-modes in

superposition to fit the beam well. For the beams encountered
in millimeter-wave systems the choice of linearly polarized
E-fields is usually the best choice.

The concept of the angular spectrum of plane-waves is
useful, as we show below, as a lead-in to beam-modes. It
has an important application in its own right, however. If the

properties of a planar optical component (such as a filter) are

understood in terms of the changes in amplitude and phase
that it produces in a true plane-wave incident upon it, the
effect of that component on a beam of finite width can be

calculated by decomposing that beam into its angular spectrum
and assessing the changes made by the component on each
of the plane-wave constituents. That is, the beam samples
the plane-wave properties of the component over a range of
angles of incidence; given the Fourier transform relationship
between field and angular spectrum it will be clear that the
smaller the beam-width the larger the angular range sampled.
The modification of the angular spectrum by a planar optical
component would not depend on its longitudinal location in
the beam since the one angular spectrum applies throughout
the z >0 space (there is, for example, no advantage in placing
such a component in a cross-section where the phase-fronts of
the beam are plane, apart from the fact that the diameter of
the component corresponding to a given level of truncation
of the beam might be smaller there).

Equation (4) above shows the relationship of a beam’s
angular spectra to its near-field, i.e. to its source-plane field;

(5)-(7) below show the very direct relationship of the angular
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spectra to the far-field. The field amplitude at a distant point in
a particular direction is essentially the amplitude of the plane-

wave in the angular spectrum which has its k-vector in that
direction since application of steepest descent or stationary
phase methods to (2) with kp >>1 gives [11]

Ez(o, #) = ‘i2n-k
2{exp~Pikp}”c0s8 ”p(o~’ ‘5)

Ev(o, #) = ‘i27rk
2{exp;ikp}”c0s@ ”Q(o@’ ‘6)

Here p, 0, 4 are spherical polar co-ordinates and k. =

k sin Ocos $, kY = ksin~sin~; P(O, 4), Q(O, 4) denote

l’(k~, kg), Q(k~, ky) with these substitutions. It follows that
the polar components of E in the far-field, kp >> 1, are

[ET,Ee, E4] = i2nk2
{expGikp}

The factor {exp –zkp/kp} in the expressions above has the
form of a spherical phase-front but the beam’s far-field will
only have truly spherical phase-fronts when P (k., kv) and
Q(kZ, kg) are real or pure imaginary and that would be so
only for a field in the source-plane that has uniform phase and
an amplitude distribution with a center of inversion symmetry.

The angular-spectra of plane-waves representation gives a
complete description of a beam-field; but it does not have
a form that allows direct calculation of the modification
of a beam produced by a conic-section reflector or a lens
(and the same could be said of alternative representations in
terms of superpositions of cylindrical-waves or of spherical-
harmonics). The beam-mode representation, and modal trans-
fer matrices, were developed to this end [1] – [7]. We present
a particular formulation of Beam-mode Optics appropriate for
applications in the design of long-wave optical systems in the
following three Sections.

2.3 Beant-Modes

We now seek a modal representation of each of the two
scalar beam-fields of (2). We denote the scalar field by
@(z$ y, z) and it angular spectrum by A(kZ, kv). It proves to be
helpful to represent the beam-field as a modulated plane-wave,
i.e.

@($, y, 2) = U(Z, y, ,z) . exp – ikz (8)

and to concentrate on the function U(X, y, z). The relationship
between u($, y, z) and A(kZ, ky) can then be presented as a
Fourier transform thus

U($, y; z) == /+m{A(kx,k,)expz(k -k.)%}
J–cc

i.e. the field in the plane z is evaluated as the two-dimensional
inverse Fourier transform of {A(k., k,,) ex~ i(k – k.),z]. z

being treated parametrically,

u(z, y;z) = FT{A(kZ, kV)expi(k – k.).z} (lo)

where kZ = (k’ - k; - k;)’f’ and is positive (and real)

when (k; + k;) < kz (the” beam propagates into the space

z > O) and is negative (and imaginary) for (k: + k;) > k’
(giving evanescent waves which exponentially decrease rather
than increase). This means, of course (noting that the inverse
Fourier transform of A(k2, kg) is the field in the plane z = O)
that u($, y; z) is the convolution of the field in the plane z = O
with the inverse Fourier transform of exp i (k – k.) z,

U(Z, y; z) = U(Z,Y; 0) * FT{expi(k – k,)z}. (11)

This equation is the essential relationship governing the prop-
agation. However, it does not allow useful explicit evaluation
without invoking a paraxial assumption concerning the beam’s
angular spectrum, namely that A(k., kv) falls sufficiently with
increasing kr, kv for it to be safe, if evaluating U(Z, y; z) from
(10) above, to neglect all but the first term in an expansion of
the second factor, exp i(k – k, )z, in powers of (k; + k;) /k2.
That is

expi(k – kz)z = expi
{~.-k(l-w)’z} (12)

{

k: + k:
= exp i —2 +...

2k
}

(13)

and if we retain only the first term in the expansion (the

“paraxial assumption”, the consequences of which we examine
in Section 2.4) we have

{ “~z}“4)U(Z, Y;Z) = ?L(.T,Y;O) * FT =pl

i.e.

i2’Jlk
U(z, y;z) = U($, y;o) * —

exp .–zk(fcz + y’)

22
(15)

.z

It is helpful now to remove the specific choice z = O for

the source plane. The field in the plane z is related to that in
a source plane at z = .zs, say, by

f~(~ Y;~) = u(~, Y;W)

i21rk –ik(zz + yz)
*—

‘x’ 2(2 – z~)
(16)

~—~s

There is advantage in representing the source field
u($, y; .zs) as a superposition of t3auss-Hermite (GH)
functions; this is because such functions form a complete set
(so any well-behaved function can be represented by such
a superposition, with appropriate coefficients) and because

separately they have Fourier transform properties which are
peculiarly adapted to the relationships between a beam-field
and its angular spectrum, and convolution properties adapted
to the propagation relationship above. (Gauss –Laguerre
functions would be an alternative, adapted to cylindrical-wave
rather than plane-wave representations but we shall not pursue
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that here). The normalized two-dimensional Gauss –Hermite
functions are

Z&(x, y; 2s) = (2~+%rm! n!) ~ +1
+

Wszwsy

{Hm(fiaex’-z}
{exp — i

E}{ex’i(m++)o’}

{H(h&)exP-&}

{ “W}{ex’i(n++}
. exp – z~Rsy

(17)

where the Hm (X) and JIm(Y) denote Hermite polynomials of
orders m, n respectively (m, n = O, 1,2, . . .) [12]. The wsZ,

Rs~, 8sZ and Wsv, RSV, @Sy are arbitrary real constants
independent of x, y, m and n.

The field in the z = z’ plane can be written as a
superposition of the GH functions

U(Z, y; 25s) = ~ flmn”mn (x, y; .zS);
m,n

//

+52

c ~n = I&n(%) y; ZS)
—m

. U(Z, y; ~s) dx dy . (18)

For some special forms of U(Z, g; ZS) appropriate choices for
the values of ws~, Wsy, &, Rsy, es. and @SV would give
real coefficients Cmm; generally the C’mn will be complex.
The freedom to choose values for WSZ, WSY, RsZ, RSV, es.,
@,sy can be important in that an optimum choice will keep to a
minimum the number of GH functions necessary for a good fit.

In order to simplify the expressions we have to develop
we shall exercise some of the arbitrary choice allowed in
assigning values to the parameters ws~, ws y, Rsx, Rsy
and @sZ, Q,sy by taking WSZ = WSY, Rs~ = Rsy and

@sZ = El,sy, i.e. reducing the number of parameters from

six to three (w’, Rs, es ). This will not restrict our analyses
to non-astigmatic beams because an astigmatic beam can be
well fitted by a superposition of non-astigmatic GH functions
albeit with a larger number than would be necessary with
astigmatic GH functions. Our analyses below could be straight-

forwardly generalized to include astigmatic GH functions but
with considerable elaboration in the expressions required. The

superposition in (18) will therefore be taken hereon to involve
the non-astigmatic GH functions (see equation 19 below)

Having written the field in the source-plane at z = zs as
a superposition of GH functions, we can use the convolution
above (16) to find the field in an arbitrary down-beam constant-
.z plane. A GH function convolves with a Gaussian function
of imaginary argument to produce a particularly simple result,
namely a GH function of the same order, with a scaled argu-
ment and added spherical phase-front curvature (Appendix A),

i.e. (16) leads to the following form for the propagating field

U(Z, y, z), namely a superposition of beam-modes

u(x, y, z) = ~ C&umn (x, y, ,Z) (20)
mn

where the coefficients C mn are those introduced above and the
Umn(x, y, z) are the well-known Gauss–Herrnite beam-modes
(see equation 21 below)
in which w(z), R(z) and ~(z) are

W2 = w; + {2(Z – zlJ/kwo}2

R = (.z – ZO) i- {kw:/2}2/(2 – .zO)

{}

kwz
@ = tan-l —

2R
+ @o

=~in-1(~+{~}-2)-1’2 +@0 (22)

in which the constants Wo, Z. and @o are clearly determined
by the values assigned to WS, RS and @S thus

Umn(z, y; 2s)= (2m+n–17rm! n!) ‘++{H.(ti;)Hn(fi&)’XP-~}

“{exp – M *}{expi(m+n+l)@S}. (19)

‘um.(z, y,2) =(2~+’-%m! n!)-+;
{H.(~:)H(~:)ex’-Y}

“{

ik(zz + yz)
exp –

2R
}

{expi(m+n + 1)~} (21)
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{}

kw:
@o = @,s –tan-l —

2Rs

( {g}-’)-’”.,23,
= @S - sin-’ 1 +

(It is necessary to give the two forms for 63 in (22) in order

to determine uniquely the quadrant for @.)

The first term in curly-brackets in (21) shows the form
of the variation of the modulus of the mnth beam-mode
over a cross-sectional plane. This is a Gaussian function of

(Z2 + y’) modulated by the polynomials. The scale of this
variation changes with z through the z-dependence of the
beam-width parameter w. This expanding scale of the mode’s
field distribution as it propagates is the diffractive spreading

of the beam.

The second term in curly-brackets shows the variation of
the phase of the beam-mode field over a cross-sectional plane,
relative to the on-axis value. The form of this term indicates (in

paraxial approximation) a spherical phase-front with radius-of-
curvature, R. The value of R varies with propagation distance,
but not linearly and this means that the locaticm of the centre-
of-curvature of the beam-modes’ equi-phase surfaces varies
with down-beam distance (a second aspect of the diffractive
spreading of the beam).

The third term in curly-brackets gives the on-axisphase. The
phase-angle (m+ n + I)@ registers an on-axis phase slip of
the mnth mode relative to a plane-wave phase (kz – d) with

down-beam distance. This phase slippage is the third conse-
quence of diffractive spreading. @ is thus the “beam-mode
phase-difference”, i.e. the common on-axis phase-difference
between successive modes.

The factor in front of the first curly-bracket normalizes
the power carried, i.e. the integral of u* mn umn over any
constant-z cross-section of the beam-mode has unity value.

At z = .zO,w takes its minimum value wo and R + m, i.e.
the phase-front is plane there; this is known as the beam-waist
of the mode. If Rs is negative, .zO> zs; the beam converges
as it propagates from z = zs to z = .zOand diverges beyond
,zO. If Rs is positive, Z. < Z., and the beam diverges as it
propagates from z = zs, as from a “virtual” beam-waist at
z = 2,.

2.4 Paraxiality

Equation (11) shows that the field in a down-beam cross-
section U(X, y, z), is related to that in the source plane
z = z., by convolution with the Fourier transform of
exp i (k – k,) (z – ,z~); in arriving at the beam-mode repre-
sentation the paraxial assumption was made, namely that only
the leading term in the expansion of exp i(k – k=) (z – z.)
in powers Qf (k: + k;) /k’ should be retained. If the next
term in the expansion were now restored, each beam-mode
field would have to be corrected by convolving it with the

(%+~; ) [k(z – z.)]}. The largerFourier transform of exp { z~

k(z – ZS) the broader the peak in the Fourier transform, and
consequently the greater the modification produced by the
convolution. Such a correction could be made numerically but
we can draw some conclusions about whether it would be
necessary to do so as follows.

The required corrections are, as we have noted above,
greater at larger z, and are therefore most marked for the far-
field, i.e. for .2 >> 1 where 2 = 2(z – z,s)/kw~. For the
far-field, however, an exact solution is available and we can
assess directly the magnitude of the non-paraxiality correction.
The exact solution given in (5), with P(O, 4) taking the

form appropriate to a beam having, in the source plane, a

uniform phase and a Gaussian amplitude distribution with
width parameter Wo, gives the following expression for the
far-field intensity SF = 113(0, #) l’, as a function of off-axis
angle, O, relative to the on-axis value

‘F’(o) =
SF(O)

cos’ Qexp {-2sin20/(2/kwO)2} . (24)

(The Fourier transform Qf a Gaussian function with width

parameter W. is itself a Gaussian function with width
parameter 2/we; the sin’ (3 derives from the substitution
k’ sin’d for (k: + k;)).

To compare this exact form with that indicated by a beam-
mode solution it is necessary to put (z – z,) ~ M in the
beam-mode expression of (21) and to cmvert the result into
a distribution over a constant-p (spherical) surface rather than
over a constant-z plane. To do this it may be noted that the
on-axis intensity decreases as (z – zs )‘2 in the far-field, and

(z’ + g2)/(z - .ZS)2 = tan’d. Hence—

SF(8)
— = cos-2$exp{-2tan20 /(2/lcwO)2} .
SF(O)

(25)

The two forms, the exact and that uncorrected for non-
paraxiality, given by (24) and (25), are shown in Fig. 1 for four
selected vaIues of kwo, namely 3, 4, 6 and 10. For kwo = 10
the difference is extremely small; for kwo = 3 it is significant.
The value kwo = 6 marks a transition between needing no
and needing some correction of the beam-mode solution for
non-paraxiality.

For higher-order modes the far-field correction is of similar

form to that applied to the fundamental—it is essentially the
cos 9 factor in (5). However, for a given W., the outermost
peaks in GH functions occur at greater distances from the
axis the larger the mode-numbers. In the angular spectrum,

the outermost peaks are at 6’ w (~) 1’2 ~, where n is one of
the mode-numbers. The cos @ non-paraxlality correction factor
therefore has more consequence for a higher-order mode than
for a lower; non-paraxial corrections may not be negligible

for kwo < 6(n/2)1’2.
An optical system which is to contain planar components

such as filters and diplexers would usually be designed with
kwo >> 6, not simply to avoid paraxiality but because
such components will not provide high performance over a
wide range of plane-wave angle-of-incidence. The requirement
on kwo set by this consideration would usually be more

demanding than the paraxial condition kwo > 6(n/2)1/2
which corresponds to an angular spread 9 s 1/3 radians. An
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Fig. 1. Normalizedfar-fieldintenshy distributionforabeamwitha Gaussian
distributionin thesourceplane.Theparameteris lnoo.

exception to this might be at a transmit or receive antenna
which, in order to have high directivity, would be electrically
large and which would have to be illuminated by a strongly
divergent beam to avoid having a system of appreciable length.
In that case, however, the large antenna would usually be in the

far-field of the beam that illuminates it and the non-paraxiality

can be corrected as shown above.
In the literature there are several analyses of non-paraxiality

(see for example [13], [14]) which keep the beam-mode in the
far-field and modify the form in the near-field, The transmit
and receive beams of real optical systems are formed by a
near-field component, i.e. the feed-horn, however, and what is
required is retention of the beam-mode form in the near-field
with corrections applied in the far-field (see [15]).

2.5 Beam-mode Propagation Through Optical Systems

The function of a lens or of a conic-section reflector in an
optical system can be idealized as the introduction of a phase-

delay which varies quadratically with off-axis distance; such
an “ideal phase-transformer” acts on each incident beam-mode
by discretely changing the radius of curvature of its spherical
phase-front from the incident value R, to an emergent value
Re such that

111 /- ..

where ~ is the “focal length” of the transformer, while leaving
the amplitude distribution across the beam unchanged. (By
convention, the phase-front radius of curvature is positive
where the beam-mode is diverging and negative where it is
converging. The focal length may be positive or negative).
The focal length could be different for the xz and y.z planes
but we shall treat only axially-symmetric transformers.

Real lenses and conic-section reflectors will depart some-
what from this ideal behavior. A lens introduces some modifi-
cation of the amplitude distribution as a result of reflection at
its surfaces; a reflector gives some aberration of the emergent
phase-front if used off-axis. A well-designed bloomed lens

[16] can approach the ideal at least over a restricted range of
frequency, however, and a well-designed reflector will give

only weak aberration over a wide frequency range and the
residual phase distortions can be cancelled to a consider-
able degree at other reflectors in the system if appropriately

configured [17]. We shall assume ideal “phase-transformers”
here.

Reflection at an off-axis conic-section reflector will change
the directions of propagation and of polarization of the beam-
modes, of course, If, as we assume hereon, the co-ordinate
frame is rotated appropriately (see for example [5]) at each
reflection in accord with metallic boundary conditions and the
local plane-wave assumption (which presumes that reflector
and phase-front radii of curvature are much smaller than
A = 2nc/u) the directions of propagation and polarization
relative to the local co-ordinate frame will be unchanged.

The changes in the beam-mode parameters w, R, @ that
occur as the beam passes through an ideal transformer as
indicated above can be simply stated:

111
We=wz; —=———;

R. Ri f
@e=E), (27)

where the subscripts i, e indicate the cross-sectional planes
at the transformer, on the incidence and emergence sides
respectively. The beam propagating away from the transformer

is made up of beam-modes with unchanged coefficients, Cm.,
with the emergence side of the transformer as a new source-

plane so that the beam-mode parameters w, R, @ vary with

propagation distance from that plane in accordance with (22)
but with new values for the constants WO,RO, @ given by (23)
with ws, Rs, 63s replaced by the w., Re, @c above. If this
beam propagates to another ideal transformer, corresponding
changes in Wo, R. and 00 will occur there but, again, there
will be no change in the C~~.

The changes in the values of w, R, @ as a beam propagates
from one arbitrary cross-section to another, through a train
of ideal phase-transformers, can be determined by a direct

transfer matrix calculation if one introduces two particular
combinations of w, R, @ which show simple bilinear behavior
both at an ideal transformer and in a free-space propagation
step; they are

where q is given by

$=+{g]”’).(29)

In terms of u and v, (27) for the changes in w, R, @ at an
ideal transformer becomes Ue = Ui and we = (—1/~) u; + vi;
(22) for free-space propagation becomes u = U.+ V(Z - Zo)
and v = Vo, where Uo, V. are the values of u, v at z = ZO,

and hence u. = Ui + dvi and we = vi, where the subscripts i,
e denote the beginning and end of a free-space step of length
d. These bilinear relations can be expressed in matrix form:

At a transformer of focal length f:

(30)
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In a free propagation step of length d:

(31)

If a beam is passing through a train of phase-transformers
the output u., Ve frQm one step becomes the input u,, vi for
the next. The overall transformation produced by the train is
expressed in terms of a transfer matrix, known as the “ABCD
matrix” [18], [6] which is obtained by multiplying the matrices
of the individual steps, free-space propagation steps alternating
with phase transformations.

[3‘[:ml (32)

It should be noted that the elements of the ABCD matrices
introduced here will all be real. It can also be useful to know
that the determinant (AD – CB) is equal to 1 for all of

them [6].
Our purpose is to be able to determine the values of w, R,

@ in any specified output plane in terms of the values of w,

R, El in any given input plane. Reference to the definitions
of u, v and q in (28) and (29) leads directly to the following
expressions for the ratios of output to input parameters (in
deriving these relations it is noted that w is real positive).

(33)

R. _ R(l/q;) where ~ = c + D(l/q;)

z– I?(l/qe) A + 13(1/q~)
(34)

q.

(@e - ~,) = -phase angle of (A + l?(l/qi)) (35)

72 denotes the real part of the quantity in brackets.
If the matrix A’B’C’D’ denotes that calculated for a path

beginning at the “input port” of a system and ending at
the “output port” (these ports might coincide with the first
and last transformers in the train but they need not), the
elements A’B’C’D’ will depend only on the separations of the
ports and transformers and on the transformers’ focal lengths;
A’B’C’D’ characterizes the train i.e. the optical instrument.
If the matter of interest is then the beam-fields in arbitrarily
chosen input and output planes, at distances d, and d. from
the corresponding ports, the overall ABCD matrix required
is then

[

_ A’+ C’de A’d, + D’d. + C’dide + B’
—

c’ D’ + C’d$ 1
(36)

The simplest example is a single phase-transformer with
ak-bitrarilychosen input and output planes, distance d~ and de
from the transformer respectively. The ABCD matrix for this

system is

(37)

To illustrate the use of this transfer matrix consider an inci-

dent beam-mode which has its beam-waist in the input plane.

We can determine the size and location of the beam-waist
of the emergent beam-mode, in terms of the corresponding
quantities for the incident beam-mode, as follows.

To find the location of the beam-waist of the emergent beam-
mode, note that (1/q) is pure imaginary at a beam-waist and
use (34) for 1/ q~ to determine the value of d, which, given
a pure imaginary l/q, at d,, results in a pure imaginary I/q..
The result is

r 1

(de - f)=

1

f2

I

, (d, -f). (38)
(~i - fy + (*)

Negative d~ or d, would indicate a virtual beam-waist. Using
this result, A and B in the matrix of (37) can be expressed in
terms of f and (d~ – ~) only, so that (33) leads directly to

These relations are well known [19]. The change in the on-
axis phase, from incident to emergent beam-waist, has received
less attention but is of importance when treating beams made
up of more than a single beam-mode. Equations (35) and (38)
lead directly to

–kw;i/2
tan(t3. – Oi) =

_ –kw:ef2

d,–f – de–f
(40)

and (~. – @z) will be in first or third quadrant for d, < f
and in second or fourth quadrant for d% > ~.

We have set out in this Section the way in which the values
of w, R, El in any specified cross-section of a beam passing
through a train of ideal phase-transformers are determined.
Having found them the total field there is obtained by su-
perposing beam-modes using the coefficients Cmn established
when fitting the field in the source plane. @l is the beam-
mode on-axis phase diference of course, the on-axis phase
of the mn mode being (m + n + 1)@. Such superpositions
are relatively undemanding computationally—up to, say, 100
modes could readily be included in calculations based on a
personal computer.

III. FOURIER OPTICS

We now use the beam-mode transfer matrices to show that
there are special $hoices of the input and output planes of
a system for which the beam transformation is a Fourier
transformation. These special choices have previously been
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established by detailed consideration of diffraction integrals

using essentially the same paraxial assumption as that re-
quired for beam-mode analysis [10] and the Fourier transform

relationships involved have come to be known as Fourier

Optics. In deriving them here through beam-mode analysis,
they become incorporated in the more generally applicable
Beam-mode Optics, and the route to recovering the vector
properties of the beam-field is made clear. This may facilitate

the explicit use of the Fourier Optics results in the design of
long-wave systems—up to now they have found wide use in
short wave—visible and infrared—optics but little use has
been made of them in the millimetric and terahertz ranges.
They have especial importance in the design of very wide-
band long-wave systems. For those cases in which they are
applicable, they circumvent the need to undertake a beam-
mode decomposition explicitly.

Consider first a single phase-transformer and choose input

and output planes which are both at the focal distance .f
from the transformer—the so-called front and back focal
planes. The beam-mode transfer matrix for this case is (setting
d; = de = f in the matrix of (37))

(41)
L JJ

and this leads directly to qeqi = – f 2 and thence to the

following relationships between the beam parameters w, R,

@ in the two focal planes

ReRi = –f2+;

()
; 2(l+@;W:w: = 4 —

@.–C3~=-tan-lK+~ (42)

where we have written K for kw~ /2Ri. We have stressed

earlier that the assignment of values to w, R in a reference or

source-plane is arbitrary; choosing Ri -+ co, K = O, makes
these relationships especially simple: wewi = 2f /k; R. ~ cc

and O. – ~, = n/2.
Relationships of this form have a special significance. It

is shown in the Appendix that the Fourier transform of a
Gauss-Hermite function is itself a Gauss-Hermite function
of the same order number mn, whose parameters w, R, @
are related to those of the initial G–H function precisely as
indicated in (42) above when the conjugate variables of the
function and its Fourier transform are identified as (Zi, vi)

and ((k/~) z., (k/.f)y. ) respectively, where ~i, vi are Co-

ordinates in the input plane and z., ye co-ordinates in the
output plane. This is true for a Gauss-Hermite mode of any
mode number and, since Fourier transformation is a linear
process, it will be true also of any superposition of beam-
modes. That is to say, when an arbitrary paraxial beam passes
through a phase-transformer, the field distribution in the back
focal plane of the transformer is a Fourier transform of the
field in the front focal plane, the conjugate variables being
xi, vi and (k/~)ze, (k/~) y,.

The frequently invoked rule [19] that a beam-mode having

a beam-waist in the front focal plane of a lens will produce an

emergent beam having its beam-waist in the back focal plane,
with woeWoi = 2f /k can be seen to be a simple special case

of the more general and more powerful relation above.
The essential property of the transfer matrix above that leads

to the Fourier transform relationship between the fields in the
output and input planes is that the elements A and D are zero.
If the elements of the matrix representing an arbitrary train of

transformers, from input to output port, are A’, B’, C’, D’,

then the planes at distarices

de = –A’/C’; d~ = –D’/C’ (43)

from the input and output ports will give A = O and D = O
in the system’s ABCD matrix (36). Such a choice therefore
leads to the relationships in (42) above where f is now to be
interpreted as

f = –1/c7’ = B’. (44)

Thus the planes identified by (43) are the front and back focal

planes of the train of phase-transformers, and an arbitrary
paraxial beam propagating through the train will produce a
field distribution in the back focal plane that is a Fourier
transform of that in the front focal plane, the conjugate variable
being (z~, y~) and ((k/~)xe, (k/~)ye).

Consider, now, two transformers separated by the sum of
their focal lengths ~1, ~z and take the input plane at a distance
~1 in front of the first transformer and the output plane at a
distance .f2 beyond the second. The overall ABCD matrix
for this system is

Equations 33–35 then lead to qe = ( fz/.fI )2q, and thence the
following relationships between the parameters of the fields in

the output and input planes when a beam-mode passes through
the system

and

O. – @i = n when ~1, $2 are of the same sign

= O when ~1, .fz are of different sign. (47)

When ~1, ~z are of different sign the system clearly pro-
duces in its output plane a coherent image of the field in its
input plane. When jl, .fz are of the same sign the change in the
phase difference between the mode rnn and the fundamental
mode is

(m+n)(ee -e,) = (m+n)7r. (48)

A mode for which (m+ n) is odd thus shows a T phase-
change, i.e. an amplitude inversion, whereas a mode with
(m+ n) even shows no change. This can simply be interpreted
as inversion of the mode pattern, through the on-axis point, for
all modes odd and even: the T phase-change for (m + n) odd
is inversion, and the zero phase-change for (m + n) even is
consistent with inversion because such a mode has inversion
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symmetry. The system similarly inverts and scales the field
distribution of each mode.

This system thus produces in the output plane a magnified
coherent image of the field in the input plane, i.e. phase as
well as amplitude is reproduced, with scaling

(49)

independent of k, i.e. the scaling is the same for all fre-
quencies.

The well known fact that a beam-mode which has a beam-

waist in the input plane of a two-lens system of this kind will
give an emergent mode with its beam-waist in the output plane,
with the output and input beam-waist parameters related by
Wo, = ( f2 /f 1)Woi independently of frequency [19] can now
be seen to be a simple special case of the more general and
powerful relationship demonstrated above.

The essential properties of the transfer matrix in (45) that
lead to coherent imaging for this system are the zero values of
the elements 1? and C. Any system having a transfer matrix
with B = C = O will give coherent imaging.

We should refer to one more Fourier Optics theorem relating
to a single phase-transformer, with an arbitrary input plane at
distance d,, and an output plane at the distance de such that

111

z= ~’z
(50)

Le. B = O. (Negative values for d. or di would imply “virtual”
planes.) For this case the single-transformer transfer matrix

(37) reduces to

[=$ 31 (51)

where we have written A for (d, – f). Thence

so that

and

~. – ~i = m when A and f are of the same sign

= O when A and f are of different sign. (53)

These relationships are formally the same as those obtained
with the two-transformer coherent-imaging system (46) and
(47), with A, f replacing fl, f2, apart from the additional
phase-front curvature term A/f 2. The arguments following
(46) and (47) lead us to the conclusion that the field distri-
bution in the output plane coherently images that in the input
plane, with the substitutions

A A
xi + ——xe;

f
y%+ –—ye

f

except that there is an additional spherical phase-factor

A.k(x~+y~)
exp — i

Zf

(54)

(55)

multiplying the field in the image plane.
In seeking the special planes for which a train of phase-

transformers will produce coherent imaging, or Fourier trans-
formation, in the ways examined above, it can be helpful to
note that beam-mode transfer matrices have the same forms
as the matrices that govern the ray-tracing constructions of
geometrical optics. In the latter context the elements of the
column vectors on which the matrices operate are the off-axis
distance of a ray, and its slope [4]– [6]. Beam-mode Optics
must contain simple ray-optics as a high-frequency limit but
the identity of the matrices required in the two Optics is not
a transparent matter [18]. Given the identity, however, the

simple ray-tracing constructions can be used as geometrical,
(not geometrical-optical) representations of the properties of
beam-mode transfer matrices. That is the front and back focal
planes of a train of phase-transformers (with respect to which
the train will produce a Fourier transformation) can be found
by a ray-tracing construction involving incident parallel rays
and the focussing of the emergent rays in the back focal plane,

together with a similar construction with parallel rays incident
from the opposite direction to give the front focal plane. Also,
a system will give coherent imaging if, using a ray-tracing
construction, it can be seen to be divisible into two sub-systems
with the back focal plane of the first coincident with the front
focal plane of the second. And the condition in (50) which
results in coherent imaging with an additional spherical phase
factor (55) can be seen to be the imaging condition of ray
tracing.

IV. PARTIALLY-COHERENTSIGNAL BEAMS

4.1 Coherent-mode Representation of
Partially-Coherent Beams

The beam-mode analysis set out in the preceding Sections
deals with coherent signal beams (whether derived from a
coherent source or selected by coherent detection of signal
power incident from an incoherent source). The treatment of
the passage of a partially coherent signal beam through an
optical system has in the past been a matter of tracing the
propagation of second-order field correlations [20]. A new

approach to the description of partial coherence has been

advanced recently by Wolf [21]. We show below how this new
description makes possible the use of the Optics of coherent
beams in the analysis of the propagation of partially-coherent
beams through optical systems, resulting in a conceptually
much clearer basis of understanding.

Wolf [21] has shown how a partially-coherent beam can be

spectrally decomposed, the component at any given frequency,
w, being represented by an ensemble of linear superpositions,
V(r, w), of a set of spatially coherent elementary propagating
beam-fields, IJn(r, w),

V(r, w) = ~ a.(w) . $n(r, w) . expiwt, (56)
n

where r denotes the position vector for points in the beam. The
complex coefficients, an(w), are random numbers, fluctuating
in amplitude and phase over the ensemble, or equivalently over
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time. In particular the second-order moments are

(al(w) . am(u))= An(w) G /inm (57)

where the brackets denote an average over the ensemble, or

equivalently over time, &(u) is a constant, and &m is the
Kronecker 6. The forms of the orthonormal modes ?/&(r, u),
and the values of the constants Jn (w), depend on the second-
order statistical correlations of the field. If @~ (TS, W) denotes
&(~, w) over a source-plane, S, i.e. a cross-section through
the beam, Wolf shows that the on (TS, u), and the An(w)
are respectively the eigenfunctions and eigenvalues of the
following equation

where the integral is over the cross-section, S, and
W (rsl, rS2, w) is the cross-spectral density in S, i.e. the
time-to-frequency Fourier transform of the two-point, two-time
correlation function of the field.

The modes ~~ (r, w) are spatially fully coherent. The statis-
tical characteristics of the beam field are, in this representation,
entirely to be found in the statistical properties of the random
coefficients, an(w). The cross-spectral density for any two
points rl, r2 in the propagating beam then is given by

W(rl, rz, w) a (V”(rl, w) . V(rz, w)) (59)

= ~M) wi(7’11~)4n(7’2)w) (60)
n

In particular, the intensity distribution in the beam, which is
W for rl S r,, is

S(r, u) s W(r, r,w) = ~An(w)l@n(r, w)12. (61)
n

(Note that, when the intensity distribution is the matter of
interest, all that needs to be known about the an(w) are their
second-order moments, i.e. the An).

There is, in this coherent-mode representation of partially-
coherent signal beams, opportunity to use coherent beam-mode
analysis to treat the propagation of such a beam though an
optical system. To explore this matter further we first consider
a special case of partial coherence.

4.2 Beam-Mode Treatment of Beams from

a Gaussian-Schell Source

The coherent-mode representation of a partially-coherent
field in a source-plane has been explicitly demonstrated by
Starikov and Wolf [22] for a special case. This is the so-called
Gaussian-Schell model source in which the intensity distribu-
tion function and the correlation function over the source-plane
are both Gaussian in form. Starikov and Wolf treat a one-
dimensional Gaussian-Schell (GS) source but for our purposes
we have straightforwardly extended their treatment to cover a
two-dimensional axially symmetric GS source (Appendix C).
For such a source in the z = Oplane the cross-spectral density,

at a given frequency, w, is of the form

W(xl, yl,mz,~z) = [1(s1, yl)]+ [I(z2, y2)]+

“ P(W –$2, YI –?J2), (62)

where the spectral intensity distribution, 1(z, g) is

I(z, y) = A exp

(-2[::Y2]) ’63)

and the degree of spatial coherence L(X1 – x,, YI – YZ) is

( )
-2[(Z, - Z2)2 + (Yl - Y2)2] , (64)

= exp
W:fi

i.e. Gaussian functions with width parameters wOJ and WOW

respectively. (We omit explicit recognition that A, WOJ, WOM

may depend on frequency, w, to simplify the expressions).
That is

{
W(m, y1,32, Y2) = ~exp –

z;+y~+z; +y;

W;I }

{

(z, - Z2)2 + (yl - Y2)2
. exp —2

W;p 1
(65)

For this case the eigenfunctions of equation 58 above prove to
be (Appendix C) the Gauss-Hermite functions @m. (we make

explicit here the fact that the previous subscript, n, would
stand for an ordered pair of positive integers, m, n, when the
source is, as here, two-dimensional)

‘mn(’y)=(wz~+:m!n!)+
“Hahn

()$2+ yz
.exp– — (66)

w;
?

where the constant W. is

‘O=w’t:$’J+(67)

and the eigenvalues, ~~n, relative to the fundamental AOO,are*=(g+’+”)-’m+”
Wop

where ~ = — (68)
WI)I “

Thus since the field over the Gaussian-Schell source-plane at
z = O can be represented as a superposition of Gauss-Hermite
functions with uncorrelated random amplitudes we have an
immediate entry into a beam-mode treatment of the beam that
propagates away from the source into the space z > 0. It
will be a superposition of Gauss-Hermite beam-modes, with
uncorrelated random amplitudes for which the second-order
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moment of the amplitudes will be proportional to the ~~~
given by (68). The modes’ common beam-waist parameter is
Wo, as given by (67) in terms of the width parameters of the
intensity and correlation distributions of the source, ‘WO1and
WOPrespectively. The beam-waists are located in the source
plane ; = O.

When the Gaussian width of the degree of spatial coherence

is very much greater than the Gaussian width of the intensity
distribution, i.e. WON>> WO1,we are approaching the coherent

limit, indicated by /3 >>1. In this limit, (67) and (68) reduce

to

(69)

Consequently, for all m # O and n # O, Amn << Aoo, and,
in the coherent limit, the source is well approximated by the
lowest order mode alone.

The incoherent limit is approached when WOP << WOI. In

this case P << 1 and

rwOIwOp A
‘11,10+ — and —xl–(m+n)O.

2 A;;
(70)

All modes for which (m + n) s l/~ are needed to describe
the source well. This implies that the number of modes needed
is

Iv- 1-p” (71)

The cross-spectral density over the constant-z plane at

down-beam distance ,z from the source-plane is given by (59)

where the ~ mn are the Gauss-Hermite beam-modes with
the on-axis phase omitted since the random character of the

mode amplitudes removes coherent interference between the
modes. The modes keep their Gauss-Hermite forms as they
propagate, with an increasing width parameter w(z), and
develop spherical phase-fronts of changing radius of curvature
R(z) (22); since the values of w(z) and R(z) are common to
all the modes, the mode superposition in the cross-spectral
density above retains the Gauss-Schell form of (65), with the
addition of a spherical phase-term, i.e.

{

(z, - $2)2 + (?41- Y2)2
. exp –2

w;
}

{

ik(z; + ~: – z; – y;)
. exp

2R
}

(73)

The width parameters WI(z) and WW(z) will both scale as
W(2), so (22):

w:(z) = ()# W2(2) = W;I(l + 22);

w;(z) =
()

*, W2(.Z) = W;p(l + 22)

R(z) = z(1 + 2-2) (74)

where 2 F 2.z/kw~, wo being dependent on UJOId On Wop
as given by (67).

The intensity distribution in a constant-z cross-section is

given by W(xl, VI, *Z, YZ; .z) with xl = X2 and Y1 = WZ,and
thus from (74) has an axially-symmetric Gaussian form at all
down-beam distances z:

S(z, y; 2) = Aexp {-2%9 (75)

The z-dependence of the intensity width parameter, wl, is
given by (from (67) and (74))

()42 1 4
—+— . (76)w? = ‘~1 + % w&

W;w

In the near-field (z --+ O) the width of the beam is clearly
essentially WO1regardless of the degree of coherence. In the
far-field (Z ~ cm) the angular spread of the beam, OF = wI/,z,
is

(77)

The extremes of high and low degree of coherence (i.e./3 >>1
and ,6 << 1, respectively) are

/3>>1: OF+

/3<<1: OF+~
kwov

(78)

That is, the angular spread for low coherence is determined by

the Gaussian width parameter of the correlation function, and
for high coherence by that of the intensity distribution. The
near-to-far field transition distance, ,zt, is

(79)

It is well-known that the form of the near-field and that of
the far-field of a coherent source are related as follows

AQ = 47r2/k2 = A2 (coherent beam) (80)

where the solid-angle, fl, is a measure of the angular diver-
gence of the far-field power pattern and the area A a measure
of the extent of the near-field beam. Specifically, Q = F’/l3
where P is the total power in the beam and B is the on-axis
power per unit solid-angle in the far-field, and A = P/I where
I is the on-axis power per unit area in the near-field. For the
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partially coherent beam from a Gaussian-Schell source, the A
and C? defined in these ways are

Hence

(81)

(82)

(83)

We have noted (71) that the number, ~, of beam-modes
required to describe well a partially coherent beam is N l/2,b2;
it is clear that this number is - AQ/~2.

The propagation of the partially coherent beam from a

Gaussian-Schell source through a system of lenses or conic-
section reflectors can now be treated in terms of the indepen-
dent propagation of the elementary beam-modes as set out in
Section 2.5. The values of WM, WOfi which characterize the
source determine, through (67), the value of Wo, the beam-
waist parameter common to all the beam-modes. The ABCD

matrices will then allow the modal width parameter, w, and
the phase-front curvature, R, both of which are common to
all the beam-modes, to be determined for any selected cross-
section through the beam. The modes’ on-axis phases are not
all the same but are of no concern here because the modes’

complex amplitudes are fluctuating statistically and leave no
correlations of on-axis phases. Having determined w for a
selected cross-section, the values of wl and WWthen follow
from (74). Knowing WI, WW, R for a selected cross-section

will allow the cross-spectral density in that cross-section to be
determined (73). In particular, the intensity distribution in the
cross-section, i.e. W(XI, yl, x’, yz; z) for Z1 = X2, yl = Y2,
is as given in (75).

A system which includes beam-dividers and beam-
combiners (an interferometer would be an example) may
provide more than one path. In that case it would be necessary
to use beam-mode analysis first to determine the field in the

cross-section contributed by a single beam-mode from the
source, adding coherently the fields of the beams arriving
via the several paths. The resultant fields in the cross-section
would then be used as the elementary coherent fields in the
evaluation of the cross-spectral density adding the elementary
fields incoherently with the relative weights &~.

4.3 Beam-Mode and Fourier Optics for

Partially-Coherent Beams

In the preceding Section we treated a special case of
partial coherence for which the elementary coherent beam-
fields proved to be Gauss-Hermite beam-modes. For beams
from sources having other states of coherence the required
elementary beam-fields will not be Gauss-Hermite beam-
modes; nevertheless, beam-mode analysis can be used, at
least in principle, because, as we have established earlier,
any paraxial coherent beam can be represented as a super-
position of Gauss-Hermite beam-modes. Provided, therefore,

one can determine the elementary spatially-coherent beam-
fields required to describe the beam from a given partially
coherent source, each could be decomposed into constituent

Gauss-Hermite beam-modes. The field in any selected cross-
section through the beam in the optical system could then
be determined by adding coherently the fields of the several

Gauss-Hermite beam-modes that together make up each ele-
mentary beam-field of the source and then determining the
cross-spectral density over the selected cross-section by adding
the resultant fields incoherently. This may appear to be a large
computational process since many elementary fields might be
required. However, the powerful transformations relating the
coherent fields in special planes of optical systems which
are collectively known as Fourier Optics (Section 3) would
usually be applicable and they remove the need for explicit
analysis into beam-modes.

To make use of the Wolf representation of the beam from a
partially-coherent secondary source it is necessary to know
the statistical properties of the source (or of the detector),
i.e. its cross-spectral density W(r 1, rz, w) or equivalently the
elementary functions ~nm (r, w) and the eigenvalues ~mn.
That information may not be readily available for real sources.

If a hot black cavity is coupled to a (cool) wave-guide which
then tapers into a horn the waveguide will transmit, at each
frequency, in waveguide modes, each of which propagates into

the tapered-horn without generating higher order modes, so
that, in the aperture plane of the horn, each waveguide mode
contributes a coherent field having a well-known amplitude
distribution and a spherical phase-front centered at the apex of
the horn. The thermal field in the hot cavity would excite each
waveguide mode with fluctuating amplitude with statistical
mean spectral power density equal to K!’, where k is the
Boltzmann constant and T the temperature of the cavity. The
forms of the coherent fields over the aperture of the horn and
the statistical means of the amplitudes are thus known and
can respectively be identified with the elementary coherent
fields, ~~~ (rs, w) over the source plane and the associated
eigenvalues Amn. Murphy and Padman have considered the
far-field antenna patterns of such sources [23] and their results
can be interpreted along the lines traced here.

The surface of a hot body is a partially-coherent source. The
pertinent correlation length of the fluctuations in the field at
the surface would be - A = 2T/k corresponding to radiation
over the full 21r solid angle. That is to say, the radiated field
at a distance and over a solid angle approaching 27r would,
if propagated back to the source in a time-reversed sense,
reconstitute a field at the source which had a correlation length

- A; this might fail to reproduce all details of the field at the
source because it would not include components of the field
there which have spatial frequencies greater than k and which
therefore generate evanescent fields (Section 2.3). If baffles
with apertures were erected in front of an extended hot-body
source so as to give a beam diverging over less than 27r solid
angle, the effective correlation length in the source would
be correspondingly greater. It would be possible to estimate
the partial coherence properties of such a source in this
way. Similar remarks would apply to the beam-determining
properties of incoherent detectors.
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V. CONCLUSION

We have presented a general analytical framework for the
design of high-performance long-wave optical systems. This
framework is the basis of methods currently being used in
the design of systems for earth-remote-sensing, plasma diag-
nostics, atmospheric studies and astronomy (see for example
[22] -[33]). We have said little about the effects of truncation
of beams at apertures in the system, or about the aberrations

and cross-polar contamination arising at off-axis reflectors.
The former is usually a matter of determining the necessary
diameters of apertures, lenses and reflectors to avoid significant
beam contamination due to edge diffraction; and the latter a

matter of configuring successive reflectors to compensate for
the aberrations [17], [36], [16]. Both issues merit separate
attention later.

The effective use of the design methodology set out here
depends on being able to characterize the sources and de-
tectors—i.e. the feed-horns or other beam-forming compo-

nents—so that the relative amplitudes of the beam-modes
can be determined. For a coherent system the field over the

aperture of the horn is what is required (see for example [25],
[37]). For incoherent sources or detectors the cross-spectral
density would be necessary for precise analysis but the value
of AQ (83) k frequently all that is known.

APPENDICES

A. Convolution

We show below that the convolution of a Gauss-Hermite
function

‘Jx’”ex’(+)”ex’(+)’84)
with the Gaussian function

()–zAX2
exp ————

2
(85)

gives (for real A and 1?) a similar Gauss-Hermite function
having a scaled argument and added curvature and phase,
namely

()27r2 +

()

_jyf2
.—

]0!]
. II.(X’) . exp ~

“exp(-iB~x’2)”exp’(n+ +)0 “6)

where

~=l+~(A+@

B’ - {1 +B(A+B)}/A

X’ - AX/lal

O - tan-l(A + B)-l

=sin-1{l+(A+B)2}+. (87)

/

+Cc

—m ‘n(xoJex’(=9”ex’(*)
(–iA(X – XO)2

. exp
2 )

~ dxo . (88)

Following an extension of the method given in [7] we make
use of the generating function for Hermite polynomials [12]

~ ~Hn(X) = exp(-s’ + 2sX) (89)
n=o “

and first examine the integral

“ex’(=9”exp(-2A(xx0)2)”dxo
+=3

/( ()–x;—— exp –s2 + 2sX0) . exp ~
—cc

“ex”(+9’ex’(-2A(x“’xo
(90)

which can be re-arranged, by taking outside the integral those
terms independent of X. and completing a square inside the
integral, to give

= exp
(

-S’2+2S’X’ - ~ -iy
)

[:’x’-{(:)+xo-s ;~’’}xoxo ’91)

where Q, X’ and B’ are defined in (87) above and s’ E
S(I – :)1/2. The integral above can be directly evaluated

to give (27t/a) 1’2 and the first two terms in the exponential
outside the integral can be recognized as a generating function
for Hermite polynomials with argument X’ so we continue
with

Hn(x’)”ex’(+’)”ex’(-iBix’2
(92)

Comparing corresponding terms in the summations in equa-
tions 90 and 92 we find the convolution integral reduces
to

(3+(1-:)+”Hn(x’)
“‘x’(=)”excB~x’2)’93)

The first two factors above together can be reduced to

(-W”’X”(”++ (94)
The convolution is the integral
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where O is defined in (87) above. This gives us the form for

the convolution in (86) above.
If we now identify the Gauss-Hermite function in (84)

with a GH component of the field of a beam in a reference

plane z = .zS (i.e., (19) and identify the function in (85) as
exp (–ik~/2(z – .z,s)), we have the following connections

Recalling the pre-factor i27rk/(z – zs ) in the Fourier trans-
form of ex~ik~ (z – ,zs)/2k), and also the need to take the
product of terms of the above form, one for g and the other
for x, brings us to the expression for a beam-mode field given
in (21).

B. Fourier Transformation

The Fourier transform of a Gauss-Hermite function

‘n(x) ”ex’(+)”exp(=) ‘“)

can be established by the same procedure as followed above
for the convolution. The result is (where K is written for the
conjugate variable to X)

: Hn(-3”ex&J(27r) 2 qr

()

~K2
‘ “p 2F

“exp-z{(n++)~-n~} “7)

1

where q = (1 + K2) 7 and @ = tan–l K. We see, in particular

(putting K = O) that Hn(X) . exp(-X2/2) Fourier transforms

to l/(2T)+ . Iln(K) . exp – (K2/2) . exp(inT/2).
In order to bring this form into correspondence

notation in Section III the following connections
made

with the
must be

These relations lead directly to equation 42 of Section 3.

C. Gaussian-Schell Source Elementary Functions

Starikov and Wolf [22] use the bilinear generating function
for Hermite polynomials [38] to show that one of the orthogo-
nal one-dimensional factors of the cross-spectral density given
in (65), i.e.

W(Z~, x2) = Aex~–(a, + b)(z~ + x;) + 26x~zz} (99)

where a z l/w& and b = 2/w&, can be put into the form

“(a+f+x+l+c)rn
) +26).Hm(xlv’z H

. exp[–c2 (z; + x;)] (loo)

where c = (a2 + 2ab) 1’2.

An expression for the other orthogonal one-dimensional
factor of the cross-spectral density, W(yl, y2), can be similarly
obtained; the product of the two one-dimensional factors gives
the two-dimensionaI cross-spectral density of the Gaussian-
Schell source (equation

W($I, X2, yl, yz) =

65) ~n the form -

m

E
“4

Z?rt+nm,! ~!
m, n=o

“(a:~+x+~+c)m+

(101)

This is seen to be of the form of (60) for z = O (for a
two-dimensional source the subscript n in (60) represents the

ordered pair of positive integers, mn) if the eigenfunctions are
identified as the Gauss-Hermite functions

‘mn(xy)=(+)+c+(zm+:m!n!)
“HJx@H4@exp-c(x2+y2)1

(102)

and the eigenvalttes as

‘mn=A(a+~+c)(a+!+c)m+n(103)

Equations (66) and (67) now follow from (102) when it is
recalled that a = 1/W.2,, b = 2/w~P and c is identified as
l/w~; and (68) foIlows from (103).
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